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Using diffusion Monte Carlo, five vibrational excited states of CHs* and CDs" are evaluated and analyzed.
Here, we focus on the fundamentals in the five modes that are generated by requiring that the wave functions
change sign at specified values of the five symmetry-adapted linear combinations (SALCs) of the CH or CD
bond lengths. Even though the definitions of these modes are based on displacements of the CH or CD bond
lengths, the frequencies are found to be low compared to previously calculated CH vibrational frequencies in
this molecule. The totally symmetric mode, with A;" symmetry, has a calculated frequency of 2164 and
1551 cm™! for CHs" and CDs". The frequencies of the four fundamentals that arise from excitation of the
four SALCs that transform under G,;* symmetry have frequencies that range from 1039 to 1383 cm™! and
from 628 to 893 cm ™! in CHs" and CD;s™, respectively. The origins of the broken degeneracy are investigated
and explained to reflect extensive coupling to the two low-frequency modes that lead to isomerization of

CHs*.

1. Introduction

Protonated methane has intrigued and challenged theorists
and spectroscopists since it was first detected by mass spec-
trometry.! It is of particular interest to astrochemists, as it is
believed to be an intermediate in the reaction of H, with
CH;%.27* This reaction is thought to be responsible for the
nonstatistical hydrogen/deuterium isotopic fractionation in
partially deuterated CH;" in the interstellar medium. Whether
CH;* exists as a stable long-lived species in dense interstellar
clouds remains an open issue. The challenge in answering this
question comes from the absence of an assigned high-resolution
spectrum. Such a spectrum would provide the signatures of
CH;* that are required to identify its presence and abundance
in interstellar spectra.

The absence of an assigned spectrum reflects challenges both
in obtaining a rotationally resolved, high-resolution spectrum
and in assigning the peaks to transitions between specific
rotation—vibration energy levels. Two spectra have been
reported in the region of the CH stretch fundamental. Nearly
10 years ago, Oka and co-workers’ reported the first high-
resolution spectrum of CHs™. At that time, no assignments were
made. More recently, a lower-temperature spectrum was ob-
tained by Savage, Dang, and Nesbitt.® Although patterns have
been identified in this spectrum and some assignments have been
made, much of the spectrum remains unassigned.” In addition,
a third, low-resolution, laser-induced-reaction (LIR) spectrum
was reported by Asvany et al.® Although this spectrum does
not provide the signatures needed to identify CHs™ within the
interstellar spectrum, it does provide an overall contour of the
spectrum for frequencies above 1000 cm™!.

Why should the infrared spectrum of a molecule that consists
of six atoms, five of which are hydrogen atoms, be so difficult
to understand? According to calculations performed at the
CCSD(T)/aug-cc-pvtz level, the dissociation energy of CHs*
to form CH;* 4 H, is 47 kcal/mol,” making CHs" a reasonably

T Part of the “George C. Schatz Festschrift”.
*To whom correspondence should be addressed. E-mail: mccoy@
chemistry.ohio-state.edu.

10.1021/jp8112733 CCC: $40.75

strongly bound molecular ion. On the other hand, close
examination of the potential surface below 350 cm™! reveals a
surprisingly flat potential. By symmetry, the potential surface
that describes CHs* must have 120 energetically equivalent
minima. These correspond to the 120 ways in which five atoms
can be bound to a single central atom. The minimum-energy
geometry of CHs" is depicted in the left and right columns of
Figure 1. At these stationary points, the molecule has C;
symmetry, and these stationary points are often collectively
referred to as the Cy(I) minimum. The 120 equivalent minima
are connected by a chain of saddle points that are represented
by the structures in the central column of Figure 1. The lower-
energy saddle point also has C; symmetry and is referred to as
the C,(II) saddle point. It has an energy approximately 30 cm™"
above the C,(I) minimum.® There are 120 energetically equiva-
lent saddle points with this structure.!®"!* The other low-lying
saddle point has C,, symmetry and an energy that is ap-
proximately 340 cm™! above the global minimum.’ There are
60 equivalent C,, saddle points!®~!3 on the global surface for
CHs*t. Taking these 180 saddle points into account, one can
find a path that connects any of the C4(I) minima to any of the
other 119 minima.

Because motion across these saddle points primarily involves
the hydrogen atoms and the saddle points all have energies
below 350 cm™, it is not surprising that the ground-state wave
function has significant amplitude in all of the minima, as well
as the saddle points that connect the minima.'*~!” This observa-
tion was supported by the recent work of Wang and Carrington'®
in which they performed large-scale variational calculations on
CHs*t. They found that energy level patterns for the bending
modes were not significantly affected when they replaced the
potential surface of Jin et al. by one in which any electronic
energy below 2000 cm™! was replaced with an energy value of
2000 cm™!. This and earlier studies point to an image in which
CH;" freely isomerizes among the 120 equivalent minima in
the potential.'!2> To date, a model Hamiltonian that fully
captures the large-amplitude motions in CHs" has not been
developed. This makes the assignment of the high-resolution
spectrum a challenge.
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Flgure 1. Geometries of CHs" at the three lowest-energy stationary
points. In the left and right columns, the C(I) minimum structures are
shown. In the center column, the transition states with (a) C and (b)
C,, symmetry that connect these minima are depicted. The letters on
each structure are used to identify the locations of particular hydrogen
atoms in the CHs" molecular ion.

To investigate how the delocalization of the wave function
among such a large number of equivalent minima is affected
by vibrational excitation and how this is reflected in the
spectrum, we have embarked on a series of studies in which
we probe vibrationally and rotationally excited states of CHs"
using quantum Monte Carlo techniques.”** Within this ap-
proach, we generate excited states by requiring that the wave
function changes sign at selected molecular geometries. This
approach generally does not produce molecular eigenstates.
Instead, it produces the lowest-energy zero-order states that have
the required properties, for example, a state in which the wave
function changes sign as the CH bond lengths are extended.

In this study, we draw from the high symmetry of CHs™ and
investigate the nature of vibrationally excited states obtained
by putting one quantum of excitation in the vibrational modes
that are generated by taking the linear combinations of the CH
bond lengths that transform as A;" or G;t under the Gy
permutation-inversion symmetry group for CHs".?> For com-
parison, we have also studied how complete deuteration affects
these results by calculating the same set of excited states for
CDs*. It should be noted that, although the nodal structure that
we have chosen depends on the values of the CH or CD
distances, the fact that diffusion Monte Carlo (DMC) will
generate the lowest-energy state with the chosen symmetry
properties does not ensure that the states we access will be CH
stretch fundamentals. Rather, by analyzing the delocalization
(or localization) of the probability amplitudes associated with
the ground and excited states among the 120 equivalent minima
on the potential surface, we are able to gain insights into the
nature of the couplings within CHs™.

2. System

Before discussing the methods used in this study, it is useful
to review some of the properties of CHs". Whereas the ground
state has equal probability amplitude in all 120 minima, some
of the excited states do not. This assertion reflects the fact that
the full permutation-inversion symmetry of CHs" (Gayp) is much
higher than the point-group symmetry of any of the stationary
points that are sampled by the ground-state wave function (C,).
Similar behavior is seen in molecules, such as methanol, that
have a 3-fold torsion barrier. In Figure 2, we plot a one-
dimensional potential of this form, as well as the probability
amplitude associated with the three lowest-energy eigenstates.
As can be seen, the ground state (plotted in black) has equal
amplitudes in all three wells, whereas the other two states
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Figure 2. Potential (thick black line) and probability amplitudes (thin
lines) associated with the three lowest-energy wave functions for a
3-fold torsion barrier. The state plotted in black is the ground state.
The other two states make up the doubly degenerate first excited state.
The parameters used for this calculation were based on a study of the
methyl rotor in CH;0,.2°

(plotted in red and blue) have equal amplitudes in the two central
wells but either zero or more amplitude in the outer wells.
Similar behavior is expected for degenerate levels in CHs*. This
being the case, it will also be useful to find methods for dividing
the probability amplitude into 120 pieces, each of which is
assigned to a single potential minimum.

As mentioned above, there are three important low-energy
stationary points on the CHs™ potential. All are depicted in
Figure 1 and have calculated energies that are below 350 cm™'.°
On average, all five CH bonds are equivalent. In examining
the CH and HH bond lengths at the three stationary points, the
equivalence is less obvious. As the bond lengths reported in
Table 1 indicate, in the two structures with C; symmetry, the
rag distance is only 0.95 A, based on CCSD(T) calculations.®?’
These two hydrogen atoms are also associated with CH distances
that are longer than the other three CH bond lengths by about
0.01 A. Based on these and other considerations,!”?*?7 the two
hydrogen atoms that are closest together in the two structures
with C; symmetry are referred to as the H, subunit, and the
remaining three hydrogen atoms along with the carbon atom
are referred to as the CH;" subunit. Motion across the C,(II)
saddle point corresponds to a 60° rotation of the CH;" subunit
and is shown in Figure la. The motion across the C,, saddle
point corresponds to exchange of a hydrogen between the two
subunits and is shown in Figure 1b.

Based on these considerations, we have developed an
approach that allows us to assign an arbitrary molecular
geometry to a specific minimum on the potential. This requires
that we label the five hydrogen atoms in an arbitrary structure
of CHs" so that they correlate to the labels in Figure 1. The
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TABLE 1: CH and HH Bond Lengths® (f&) at the Three
Stationary Points®

structure

bond c, (D C,(I) G,

CH, 1.20 1.20 1.14
CHg 1.20 1.20 1.16
CHc 111 1.10 1.14
CHp 1.09 1.10 1.09
CH: 1.09 1.08 1.09
H,Hs 0.95 0.94 1.18
H.Hc 2.04 2.02 2.00
HAHp 1.72 1.55 1.75
HAHg 1.72 1.84 1.75
HpHe 1.44 1.55 1.18
HgHp 1.94 2.02 1.94
HpHe 1.94 1.84 1.94
HcHp 1.79 1.76 1.75
HcHe 1.79 1.85 1.75
HpHg 1.88 1.85 1.81

@ Reference 9. ” See Figure 1.

hydrogen atoms that make up the H, subunit are identified as
H, and Hg, and the hydrogen atoms labeled C—E make up the
CH;" subunit. We then chose the B and C labels by requiring
that the distance between these two atoms be the shortest of
the six possible hydrogen—hydrogen distances that involve one
hydrogen atom from each subunit. The atoms labeled D and E
are chosen to satisfy the requirement that hydrogen atoms C—E
contained within the CH5" subunit are oriented in a clockwise
manner. Although this is shown for the three stationary-point
geometries in Figure 1, this approach can be applied to any
arbitrary molecular geometry.

3. Theory

3.1. Diffusion Monte Carlo. For this study, we use diffusion
Monte Carlo (DMC) to obtain both the energy and wave functions
for the ground and selected excited states of CHs™. As these
approaches are discussed elsewhere,?®3° we discuss them only
briefly here. In addition, the parameters used for the present study
of CHs™ are identical to those used in our earlier study, and the
reader is referred to ref 24 for the specific numerical details.

The DMC approach is a statistical method for solving the time-
dependent Schrodinger equation at long imaginary times, 7, where

r=7 0

and the wave function is represented by an ensemble of d-functions,
which are often referred to as walkers. At long imaginary times,
the distribution of walkers provides a Monte Carlo sampling of
the wave function for the state of interest. The descendant weighting
technique is used to obtain the associated probability amplitude,*!
which can be used to obtain expectation values of multiplicative
operators or projected onto any coordinate or coordinates of interest.

In this study, we use the global potential surface for CHs™,
developed by Jin et al.” To account for the equivalence of the
minima, our DMC algorithm is modified slightly to ensure that
the wave function has the proper symmetry. Specifically, at each
time step, the coordinates of a randomly selected pair of fungible
hydrogen atoms are exchanged. In principle, this should not be
necessary, but we and others have found that, when there is an
effective barrier between minima that is large enough that there is
zero-probability amplitude in the classically forbidden region of
the potential, the distribution of walkers can become localized in

J. Phys. Chem. A, Vol. 113, No. 16, 2009 4589

a subset of the minima.*> This addition to our algorithm prevents
this from occurring and has no effect on the resulting energies,
within the statistical uncertainties of the simulation.

The focus of the present study is on vibrationally excited states
of CHs™, and we use the fixed-node treatment, originally described
by Anderson, to evaluate these energies and wave functions.”
Nodal surfaces divide the wave function into two pieces for which
the amplitude is either positive or negative throughout. Near the
node, the wave function approaches zero with a finite slope. This
behavior is identical to that of a wave function near an infinite
potential barrier. As such, within the fixed-node treatment, con-
figuration space is divided into two parts, using the nodal surface
as the dividing surface. The region of space in which the amplitude
of the wave function is positive is denoted ry, and the remaining
region of space is denoted r_. As such, the fixed-node calculations
are performed in two parts. In one, the global potential for CHs™
is used for r, and the potential is made to be infinite in 7—. In the
second, the regions are reversed. Because the amplitude of the wave
function must be zero in regions of infinite potential energy, any
walker that attempts to cross from ry to r— will be removed from
the ensemble. Further, because At is finite, a recrossing correction
needs to be introduced.?’ This correction depends exponentially
on the product of the distance of the walker from the node before
and after a displacement to the mass associated with this motion.
As we are considering nodal surfaces that depend on a single
coordinate, the appropriate mass is given by the reciprocal of the
Wilson G-matrix element associated with the nodal coordinate.*
As the energies associated with the two simulations should be equal,
a check on the functional form of the nodal surface is provided by
calculating the differences between these two energies. If it is
statistically nonzero, the node has not been properly placed.

A challenge in implementing the fixed-node treatment comes
in the definition of the nodal surface. For the present study, we
require that the wave function change sign at a specified value of
the various symmetry-adapted linear combinations of the CH or
CD bond lengths, described below. This is straightforward to
implement when the value of the coordinate at the node can be
determined to be zero, by symmetry. Complications arise for
determining the position of the node in excitations along totally
symmetric coordinates. In this case, we implement a modified
version of the fixed-node approach in the form of adiabatic diffusion
Monte Carlo (ADMC).*** This approach provides a way to
determine the optimal position of the nodal surface, as well as the
associated excited-state energy.

Once the simulations have been run, we have two separate wave
functions, one with positive amplitude and one with negative
amplitude. The full wave function is obtained by splicing these
two pieces together. This introduces an additional challenge.
Because the simulations that generated the two parts of the wave
function are performed independently, one must determine the
relative weights of the two pieces. Several approaches have been
proposed for doing this.*® One possibility is to require that the
excited state be orthogonal to the ground state.”” A second
approach, discussed by Sandler et al.,*® introduces the requirement
that the slope be continuous across the node. We employ a
modification of the second approach, requiring the second deriva-
tive of the probability amplitude to be continuous across the node.
The challenge in this approach is that we are dealing with a 3/V-
dimensional representation of the wave function, whereas the nodal
surface is (3N — 1)-dimensional. If we project the probability
amplitude onto the coordinate along which the wave function
changes sign, the problem becomes tractable.

3.2. Symmetry Coordinates. As alluded to above, in this
study, we examine the vibrationally excited states of CHs", defined
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TABLE 2: Identification of the Unique Sets of Minima for Each of the Four Excited States along the G, Modes®

negative®

near zero?

zero probability*

number of

mode equivalent minima positive”

ge,1 6 4XXX5, X45XX
X4XX5, X4X5X
4X5XX, 4XX5X

qc,*2° 4 3XYYX, X3XYY
3XYXY, X3YYX
3XXYY, X3YXY

go,+3" 6 12XXX, 21XXX

ge, 4 24 X1XXX, 1XXXX

5XX4X, X54XX
5X4XX, X5XX4
X5X4X, 5XXX4

YYXX3, YYX3X
YY3XX

XX1X2, XXX21
XX21X, XX12X
XXX12, XX2X1

XXX1X, XXXX1
XX1XX

XX4X5, XX5X4
XX54X, XX45X

Y3XYX, Y3XXY
YX3YX, XYYX3
YX3XY, XX3YY

X21XX, 1XX2X
I1XXX2, X12XX

45XXX, 54XXX
XXX54, XXX45

3YXYX, Y3YXX
3YYXX, 3YXXY
XYXY3, YXY3X
XY3XY, XXYY3
XY3YX, XXY3Y
YXX3Y, YXYX3
XYX3Y, YXXY3

2XXX1, X1X2X
1X2XX, X1XX2
X2X1X, 2X1XX
2XX1X, X2XX1

“Number labels identify positions of unique hydrogen atoms, with the five positions corresponding to ABCDE, as described in the text.
b Populated minima in the region where g+, > 0. ¢ Populated minima in the region where gg,+, < 0. ¢ Minima less than 10% of the amplitude
of the most populated minimum. ¢ Minima less than 1% of the amplitude of the most populated minimum. /X = H;, Hy, or Hs. ¢ X = H; or H,

and Y = H4 or H5. h X = H}, H4, or H5. iX = Hz, H3, H4, or H5.

as the symmetry-adapted linear combinations (SALCs) of the CH
bond lengths that transform as A; " or G, under the G,y complete
nuclear permutation-inversion (CNPI) group. A CNPI group is
defined by all of the permutations of a given set of like nuclei.
The group is of order [];! to account for all of the permutations
of each of the sets of »; identical nuclei in the molecule.” The
number of permutations is then multiplied by 2 to account for
inversion. In the case of CHs*, there are five hydrogen atoms and
one carbon atom, so the CNPI group has 240 = 5!1!2 elements.
The character table for the Gyyo group is provided in the Supporting
Information.

Based on this character table, the symmetry-adapted linear
combinations of the five CH or CD stretches transform under G;*
and A;" and are defined as

1
qu+=\/;(rl+r2+r3+r4+r5) (2)

1
qG,+,1 = \/;(U - Vs) 3)
i 1

q4G,+2 = \/%(27’3 —ry— 15 4)

_ 1
CIG,+,3_\/E(3'"2_V3_V4_V5) Q)

_ 1

QGI+,4_V2_0(4”1 Ty T3 T TTy) (6)

where 7; represents the distance between the carbon atom and the
jth hydrogen atom. In these definitions of the excited states of G,
symmetry, the five hydrogen atoms are no longer equivalent, and
in the permutation algorithm, described above, only equivalent
hydrogen atoms are permuted. For example, in the case of the state
with excitation in gg,+;, the hydrogen atoms labeled 4 and 5 are

not equivalent to any of the others, but the three remaining
hydrogen atoms, those labeled 1—3, remain equivalent. As such,
only permutations among the three equivalent hydrogen atoms are
considered. As a result, the 120 equivalent minima can be
subdivided into 20 groups of 6 each. The probability amplitudes
in minima in the same group must be equal.

The above discussion implies a loss of symmetry in some
excited states, and this might be surprising. If one considers
the plots of the eigenstates of the one-dimensional potential
(Figure 2), one immediately sees that the probability amplitudes
that arise from the two states with E symmetry, plotted in red
and blue, do not have equal amplitudes in all three wells. It is
this factor that we are capturing in our permutation algorithm.
Even in the absence of the permutation, we will find different
populations of walkers in different potential minima. The
permutation approach attempts to remove differences in the
populations that are due to statistics as opposed to differences
that reflect the physics of the system. In the end, the energies
of the calculated states are not affected by the introduction of
permutation.

In the discussion that follows, we identify minima based on
the locations of the unique atoms using a five-character string
indicating which of the five hydrogen atoms is in the positions
labeled A—E. When a hydrogen atom is unique by symmetry,
its atom number is used to denote its position, as in the case of
H, and Hs in the example above. When two or more hydrogen
atoms are equivalent by symmetry, their identities are repre-
sented by the letter X or Y. In the example above, X could
represent H;, H,, or H;. Table 2 provides a list of all distinct
minima, based on the definition of the four modes that transform
under G, in eqs 3—6.

3.3. Analysis Techniques. One-dimensional probability dis-
tributions, rotational constants, and participation ratios are
obtained from the calculated probability amplitudes. These
quantities provide information that is essential for generating a
picture of the structures that are sampled by CHs™ in the ground
state and various excited states. As such, analysis of these
quantities aids in our overall understanding of the dynamics of
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CHs'. When analyzing the wave function, we use several
techniques, as follows:

1. Projections of the Probability Amplitude. One-dimen-
sional probability distributions are evaluated by projecting the
probability amplitude onto a single coordinate. Following earlier
work, the coordinates on which we focus are the CH and HH
bond lengths and the two isomerization coordinates, ¢ and g.
Here, ¢ is the coordinate that connects two adjacent minima
through a C,, saddle point

lgl = Iry . = T, (7

and motion along ¢ corresponds to motion across a C,(II) saddle
point. Specifically, ¢ is defined as the angle between the vector
along the CH¢, CHp, or CHg bond axis and the plane that
contains H,, Hg, and the carbon atom.*

2. Participation Ratios. The participation ratio, p, provides
a measure of how many minima are populated in a given excited
state. This quantity is defined as*>*°

1

z z':lpi2

where p; represents the probability amplitude in the ith
minimum. In the ground state, p; = 1/120 for all i, and p =
120. For excited states, the minima will not necessarily contain
equal probability amplitudes, and p provides a measure of how
many minima are sampled in these states.

3. Rotational Constants. Rotational constants for the various
excited states are calculated by first transforming the geometries
of each of the walkers in the ensemble into an Eckart
frame.?**'*> The precise definition of this frame depends on
the choice of the static molecular model. With the high
symmetry of CHs" and the existence of three classes low-energy
stationary points, there are a number of structures that could be
used. For example, there are 120 geometries that correspond to
each of the Cy(I) minima and 120 for each of the C(II) saddle
points. Following our earlier work on isotopologues of CHs ", %
we evaluate the rotational constants, using each of the 240
stationary points enumerated above, to define the static molec-
ular model. Once the static molecular model is chosen, all of
the walkers are rotated into an Eckart frame based on that choice.
The rotational constants are evaluated as the expectation values
of the elements of the inverse of the moment of inertia tensor,
multiplied by the appropriate constants.

As described above, for some of the excited states, the
probability amplitudes at the minima that correspond to the 120
C,(I) static molecular models will not be equal. In collecting
these data, we report the weighted averages of the 120 calculated
rotational constants, weighting the values by p; in eq 8. When
a Cy(Il) saddle-point structure is used for the static molecular
model, we weight the individual rotational constants by the
average populations in the minima that are connected by that
saddle point. Again, the reported rotational constants represent
the weighted averages of the results of the 120 separate
calculations in each case.

4. Results

We use DMC to evaluate the energies, wave functions, and
probability amplitudes of the lowest-energy states that have a
single node along each of the five coordinates, defined in eqs
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TABLE 3: Excited-State Energies (cm™!) for CHs" and
CDS+ a

node’ energy 0°
CHs*
do2 =0 1039 + 5 2+ 1
qg,+3 = 0.01527 £ 0.00005 A 1150 £ 5 36 £1
doa =0 1172 £ 5 65+5
qg,*4 = 0.01435 £ 0.00004 A 1383 £ 5 108 + 2
ga,r = 2.58790 £ 0.00005 A 2160 £ 5 120
CDs"
qG,t2 =0 628 + 5 24 + 1
qg,*3 = 0.01401 == 0.00007 A 716 £ 5 34 + 1
g6t =0 729 £ 5 60 £3
qg,+4 = 0.01328 £ 0.00004 A 893 +£ 5 104 + 2
ga,r = 2.57435 £ 0.00003 A 1551 £5 120

“ Energies are reported relative to a zero-point energy of 10 916
4+ 5 cm™! for CHs™ and 8045 + 5 cm™! for CDs*. ? Definition of
the node used for the fixed-node DMC calculation. ¢ Defined in eq
8.

2—6. The resulting energies are reported in the third column of
Table 3. There are two surprising features of these results.

First, the calculated energies are too low for these calculated
states to be fundamentals in the CH stretching vibrations. This
is particularly notable for the four states with nodes in the four
gc,+n coordinates. Even the fifth state, that in which the wave
function is constrained to change sign at a specified value of
the sum of the five CH distances, has an energy that is on the
very low end of the frequency range for the CH stretch. In
contrast, based on converged variational approaches, Wang and
Carrington obtained frequencies for the two stretch fundamentals
of CHs* equal to 2467 cm™! (G;*) and 2969 cm™! (A, 7).!® Based
on the large frequency differences, it appears that the fixed-
node DMC calculations are not generating the CH stretch
fundamentals. Rather, we are locating the lowest-energy state
that has the property that the wave function changes sign at a
specified value of one of the these linear combinations of the
internal coordinates. Based on the frequencies, we believe that
the states that are being sampled can be better described as
combinations of HCH bends and the two low-frequency
isomerization coordinates than as CH stretches.

This leads to the second observation. Although one can
construct the set of four coordinates, given in eqs 3—6, that
transform under the G, irreducible representation, the calculated
energies of the states that have nodes when each of these
coordinates is zero are not equal. The lack of degeneracy of
these states is further illustrated by the fact that each state has
a different value of the participation ration, p, given in the fourth
column of Table 3.

Before continuing to a discussion of the states that were
evaluated in this study, it is useful to consider how a calculation
that imposes a node based on a linear combination of CH bond
lengths could produce states whose energies are too low to be
CH or CD stretch fundamentals. It is also appropriate to ask
whether the calculated states are relevant to a fuller understand-
ing of the spectroscopy and dynamics of CHs" and CD;s™.

The fact that the calculated frequencies are too low to be
CH or CD stretch fundamentals was, at first, surprising, but
not without precedent. In our previous study of excited states
of CHs™, we generated an excited state for which we required
the wave function to change sign when ry, — r,3 = 0, where r;
represents the distance between the ith and jth hydrogen atoms.?*
Such an excited state would, at first, be thought to correspond
to putting a node at the C,, saddle point, shown in Figure la.
In fact, the frequency that was obtained and the projections of
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Figure 3. Projections of the probability amplitudes for the A, excited state of CHs™ plotted as functions of the (a) CH distance; (b) HH distance;
(c) methyl rotor coordinate, ¢; and (d) C,, isomerization coordinate, ¢, with thick black lines. (e—h) Corresponding distributions for CDs". The thin
red and green lines represent the corresponding projections for the corresponding ground state.

the probability amplitude led us to conclude that the excited
state contained a node at the C,(II) saddle point, shown in Figure
1b. The difference between the expected excited state and the
actual excited state that was calculated reflects the fact that the
DMC simulation will provide the lowest-energy state that has
the requisite symmetry properties. We have also encountered
unexpected states in studies of Ne;OH,* HsO,*,* and H;0,.*

The situations we encountered in HsO," and H;0, ™ are most
similar to the present study. These systems can be thought of
as either a pair of water molecules or hydroxide ions with an
excess proton whose average position is on the OO axis,
equidistant from the two oxygen atoms. In these systems, fixed-
node DMC provided frequencies for the excited states that
correspond to displacement of the central proton along the OO
axis that were in good agreement with other calculations and
experiment.**"*> On the other hand, the frequency that cor-
responded to displacement of the shared proton perpendicular
to the OO axis was calculated to be close to 1000 cm™' in the
DMC studies, whereas other approaches placed this frequency
between 1300 and 1500 cm™! #4446 Interestingly, the frequencies
calculated from DMC corresponded to transitions in the spectra
of these species, whereas little intensity is seen at the frequencies
calculated by other methods. Further analysis of the DMC wave
functions in combination with comparisons to states with similar
energies in variational calculations led us to conclude that the
DMC calculations were generating excited states that involved
combination bands of lower-frequency modes. More recent
multiconfigurational time-dependent Hartree calculations of
H;sO," made similar assignments to the observed bands near
1000 cm™! 4748

The insights gained from these studies lead us to expect that,
although the states that are evaluated in the present study are
not CH stretch excitations, the identification of this set of five
states provides us with an opportunity to investigate the nature
of the coupling between the high- and low-frequency vibrational
modes and also to obtain an initial look at rotation—vibration
mixing in CHs™.

4.1. A," State. The excited state with A;* symmetry has
an energy of 2160 & 5 cm™!. This frequency is about 800
cm~! lower than the value of this fundamental calculated
variationally by Wang and Carrington'® and calculated by
vibrational configuration approaches by Huang et al.® It is
also to the red of the CH stretch band in the spectrum reported

by Asvany et al.® Consequently, we anticipate that the state
we calculated is not the CH stretch fundamental, but rather
a lower-energy combination band that, because of stretch/
bend couplings, has the property that the wave function
changes sign at a specified value of the CH distances.
Although the spectrum of CDs% has not been reported, a
calculation of the spectrum has.** Again, our calculated
frequency of 1551 &+ 5 cm™! is significantly below the
calculated CD stretch fundamental band. In addition, the near
factor of 1/+/2 between our calculated frequency and the
corresponding one in CHs™ leads us to expect that this
calculated state is also a combination band, rather than
representing a fundamental in the CD stretch.

To further investigate the nature of this excited state, we
plot projections of the associated probability amplitude along
four internal coordinates in Figure 3. For comparison, the
corresponding ground-state distributions are plotted with thin
colored lines. In both CHs™ and CDs™, the projections of the
probability amplitude onto rgg and ¢ are not changed
significantly with vibrational excitation. This fact indicates
that, structurally, this excitation does not change how the
molecule samples the various potential minima that are
connected by the Cy(II) saddle points. On the other hand,
there is an increase in the widths of the distributions when
they are projected along g and the CH distance coordinates.
The CH distance distribution also contains a shoulder at larger
values of the CH bond lengths. The increased width is not
unexpected, as the introduction of a node at a specified value
of the average CH distance will necessarily increase the width
of the probability amplitude when it is projected onto rcy.
The increase in the width of the projection of the probability
amplitude onto g can be understood by the CH distances at
the three stationary points, reported in Table 1. Here, we
find that the value of ga,+ is 0.03 A shorter at the C,, saddle
point than it is at either of the other stationary points. As
the distribution of CH distances that are sampled by the wave
function shifts to larger values of rcy, one can anticipate that
there will be more probability amplitude near the Cy(I)
minimum, compared to the C,, saddle point, in this excited
state than in the ground state. This is what is reflected in the
projections, plotted in panels d and h. This effect is also seen
in the shoulder in the CH distance distribution in panels a
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TABLE 4: Vibrationally Averaged Rotational Constants for the Ground and Excited States of CHs"
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state symmetry B, B, B, dy,
ground C(D 3.895 £0.015 3.864 £ 0.021 3.848 £0.012 0.003 £ 0.008
C(1) 3.890 £ 0.015 3.867 £0.018 3.851 £0.016 —0.001 £ 0.009
qa, C(D 3.884 £ 0.011 3.845 £0.010 3.832 £ 0.011 0.000 £ 0.008
C(1) 3.881 £0.011 3.850 £ 0.011 3.831 £0.011 0.000 £ 0.008
4q6,* 1 C(D 3.864 £0.016 3.746 £ 0.013 3.708 £ 0.014 —0.010 £ 0.007
C(1) 3.865 £ 0.016 3.744 £ 0.014 3.709 £ 0.013 —0.003 £ 0.007
4G, 2 C(D 4.107 £ 0.017 3.638 £0.013 3.575 £ 0.012 —0.056 £+ 0.012
C(1) 4.111 £0.017 3.612 £0.013 3.597 £0.013 0.038 £+ 0.010
q6,* 3 C(D 4.084 £ 0.014 3.655 £0.013 3.583 £0.013 —0.049 £ 0.008
C(1) 4.082 £ 0.014 3.632 £0.013 3.608 £ 0.013 0.032 £ 0.008
4G+ 4 C(D 3.784 £ 0.016 3.774 £ 0.015 3.759 £ 0.015 —0.006 £ 0.008
C(1) 3.787 £ 0.016 3.777 £ 0.015 3.754 £ 0.015 —0.015 £ 0.007
“ State with a node in ga,+.
TABLE 5: Vibrationally Averaged Rotational Constants for the Ground and Excited States of CDs"
state symmetry B, B, B, da
ground Cy(D) 1.975 £ 0.004 1.963 £ 0.005 1.955 £ 0.006 0.000 £ 0.003
Cy(ID) 1.979 +£ 0.006 1.960 % 0.005 1.955 £ 0.006 —0.001 £ 0.004
qa Cy(D) 1.976 £ 0.004 1.957 £ 0.004 1.949 £ 0.004 0.000 £ 0.003
Cy(1ID) 1.974 £ 0.004 1.959 £ 0.004 1.948 £ 0.004 0.000 £ 0.003
qG,*.1 Cy(D) 1.973 £ 0.006 1.920 £ 0.005 1.899 £ 0.006 —0.008 £ 0.003
Cy(1ID) 1.970 £ 0.006 1.920 % 0.006 1.902 £ 0.005 —0.003 £ 0.003
q6,*2 Cy(D) 2.110 £ 0.006 1.851 £ 0.005 1.838 £ 0.005 —0.012 £ 0.003
Cy(1ID) 2.100 £ 0.005 1.859 £ 0.005 1.840 £ 0.005 0.015 £+ 0.003
q6,*3 Cy(D) 2.077 £ 0.005 1.881 £ 0.005 1.842 £ 0.005 —0.013 £ 0.003
Cy(1ID) 2.075 £ 0.005 1.870 £ 0.005 1.855 £ 0.005 0.014 £+ 0.003
qG,* 4 Cy(D) 1.936 £ 0.005 1.933 £ 0.006 1.928 £ 0.005 0.004 £ 0.003
Cy(1ID) 1.937 £ 0.006 1.935 £+ 0.006 1.925 £ 0.005 —0.008 £ 0.003

“ State with a node in ga,+.

and e. Because of the lower vibrational frequencies in CDs™,
the effect is even more dramatic.

To investigate coupling between this vibrational excitation
and the overall rotation of the molecule, we calculate the
vibrationally averaged rotational constants for CHs" and CDs"
and compare them to the values for the ground state.?® The
results are reported in Tables 4 and 5. We find that at most
four of the rotational constants are nonzero, within the
statistical uncertainties of the calculations. Only these four
rotational constants are reported in Tables 4 and 5. Following
the notation of Ernesti and Hutson,*® the constants represent
the coefficients in

A, =BJ’+BJ>+BJ>+d,JJ +J1J) 9

As in the ground state, the three calculated diagonal rotational
constants are nearly equal, and d,, = 0. This indicates that
this excitation does not break the rotational symmetry of
CHs". Upon comparison of the ground- and excited-state
rotational constants, the excited-state values are slightly
smaller. This is consistent with an overall extension of the
average CH bond lengths, depicted in Figure 3. Analogous
trends are seen for CDs™.

4.2. G," States. The situation is more interesting for the four
excited states that correspond to excitation along the coordinates
defined in eqs 3—6. Although, taken together, these four
coordinates transform under the G, irreducible representation,
the energies, reported in Table 3, span from 1039 to 1383 cm™!
in CHs" and from 628 to 893 cm™! in CDs*. In addition to not
being degenerate, this range of energies spans the HCH bend
region of the spectrum for CHs™ reported by Asvany et al.® and
the calculated spectra for CHs* and CDs* reported by Huang
et al.&¥

In Figure 4, the probability distributions are projected onto
the four internal coordinates. Although these four excited states
have different energies, the four projections are essentially
identical to within the statistical uncertainties of the calculations.
There is a small difference in the probability distribution along
q for the state in which the excitation is along gg,+4. As with
the excited-state distribution with A;" symmetry, the distribution
along the CH distance coordinate contains a shoulder at large
values of rcy. In addition, there is a well-defined peak near 0.98
A in the projection along ryy. This, along with the minimum in
the projection of the probability amplitude along ¢, indicates
that the nodal surfaces cross at least some of the C,, saddle
points, giving the excited-state wave functions more distinct
CH;t and H, subunits. In contrast, the projections of the
probability amplitude along ¢ are nearly identical for the ground
and excited states. The results for these four states in CDs" are
similar to those for CHs™.

Although the distributions plotted in Figure 4 clearly show
coupling between each of the four gg,+, coordinates and the
coordinates that lead to isomerization, they do not explain why
the four excited states have different energies. In fact, based on
the similarities among these projections, one might anticipate
that the four excited states could be degenerate. In contrast, the
participation ratios, which provide a measure of the number of
minima sampled by each of the excited states, are different and
increase with increasing vibrational energy. Overall, the par-
ticipation ratios for CDs", reported in Table 3, are somewhat
lower than those for CHs". This difference reflects the smaller
amplitude of the vibrations in CDs", compared to those in CHs™.

Although the correlation between participation ratios and

energy is reassuring, the trend is nonlinear. In addition, one
might expect that the states that sample more minima, and
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Figure 5. Projections of the probability amplitudes of the four excited states of CHs" with nodes in gg,+, onto the occupied minima, defined in

Table 2. The red and blue bars provide the results of the simulations
2, and (d) 1.

consequently have larger participation ratios, would be lower
in energy. In fact, the opposite trend holds for these results.
The localization of the wave function in a subset of the
minima is a manifestation of couplings between the four g+,
coordinates and the isomerization coordinates. To understand
the implications of the correlation between p and vibrational
energy, we shift our focus to exactly which minima in the
potential are sampled by the parts of the wave function with

with gg,*, > 0 (red) and gg,+, < 0 (blue). Specifically, n = (a) 4, (b) 3, (c)

positive amplitude and which are sampled by the parts of the
wave function with negative amplitude. Once we have deter-
mined this, we can map out the isomerization pathways that
connect minima in a single region of space in which the wave
function does not change sign. We can also examine the
geometries at which the wave function changes sign.

To start, as the definition of positive and negative amplitude
is arbitrary, we will equate the region of positive amplitude with
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2, and (d) 1.

the region for which gg,+, > 0. Following the notation above,
this region of space is denoted as r{). Likewise, the region with
negative amplitude, r, is the region for which gg,+, < 0. In
Table 2, the various minima that are unique by symmetry are
categorized based on whether they are in #{’ or r® or have
amplitude that is less than 10% or 1% of the amplitude in the
minimum with the greatest amplitude for that state. These results
are also depicted graphically in Figures 5 and 6. When possible,
the x-axes in these plots are arranged so that the adjacent minima
are separated by a single saddle point. The exception is the state
with a node in gg,+, for which one finds that the regions with
amplitude in 7 and ™ are separated by a long string of saddle
points.

Because each of the bins in Figures 5 and 6 contains
contributions from as many as 24 minima, it is hard to connect
these plots directly to the localization of the wave function
among the 120 equivalent minima. To further our understanding
of these states, we shift our focus to the connectivity of the
individual minima with population in #{’ and in r®.

We start by considering the state with the highest energy,
the one with the node in gg,+4. In this case, there is one unique
hydrogen atom, labeled H,. When gg,+4 > 0, the molecule will
be localized in minima in which r; is larger than the other CH
bond lengths. Based on the geometries of the stationary points,
this would correspond to minima in which H; is in position A
or B. Likewise, when ¢gg,+4 <0, the wave function will primarily
have amplitude near the minima in which H, is in position D
or E and, to a lesser extent, in position C. Investigation of Table
2 indicates that this is indeed the case. This result is also depicted
graphically in Figure 5. Although this shows the connectivity

>0 (red) and gg,+,, <0 (blue). Specifically, n = (a) 4, (b) 3, (c)

of the minima, it does not guarantee that all 48 minima in which
the wave function has positive amplitude or all 72 minima that
contain negative amplitude are connected to each other through
the C(II) or C,, saddle points.

Closer examination shows that the 48 minima that are
sampled in the simulation for which gg,+4 > 0 divide into eight
groups of six minima each. Each set of minima is connected
through a set of six Cy(II) saddle points, and these groups of
six minima are further connected through C,, saddle points,
yielding two sets of 24 connected minima. Likewise, the 72
minima that are sampled in the simulation in which gg,+4 <0
can be divided into two groups of 36 minima each. These groups
of minima can be further divided into three groups of eight
minima each that are separated by the 12 minima in which H;
is in position C and the amplitude of the wave function is
smaller. Taken together, the r, and r_ regions of space are
separated by 36 of the C,, saddle points, thereby explaining
why the amplitude near this stationary point is lower in this
excited state than in the ground state. In the end, taking into
account the 96 minima with the largest amplitude, the probability
amplitude for this state is divided into eight pieces, rather than
two.

At the other extreme, the state with the lowest energy is the
one in which the node is chosen to be in gg,+,. In this case,
when gg,+» >0, 2r; > ry + rs, and Hj is preferentially located
in positions A or B, with Hy and Hs in positions C, D, or E.
Likewise, when gg,+, <0, 2r; <r4 + rs, and Hj is preferentially
located in position C, D, or E, with H, and Hs are in positions
A and B. This is seen both in the data in Table 2 and in the
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plot in Figure 5. In this case, each of the reported structures
represents four minima.

When the pathways connecting minima in which the wave
function retains its sign are evaluated, one finds that the 32
minima with the largest amplitude in r; are divided into two
groups of 12 that are each connected through 12 Cy(II) and 1
C,, saddle points. The pathways connecting minima 12 minima
with the largest amplitude in r_ are found to divide into two
groups of six minima that are each connected through six C(II)
saddle points. These four sets of minima are connected to each
other through a path that contains the remaining 58 C,, saddle
points. In comparison to the excited state with a node in gg,* 4,
many fewer of the C,, saddle points are expected to have
probability amplitude. This is consistent with the results reported
in Figure 4. Further, the wave function is subdivided into only
four pieces, as compared to the eight for the state described
above. This is consistent with the energy difference between
these states, presented in Table 3. The remaining two excited
states can be analyzed in a similar manner.

Finally, we evaluated the rotational constants for each of these
states and report the results in Tables 4 and 5. When the node
is placed in gg,* or gg,+4, the molecule retains its spherical
symmetry, and d, is nearly zero. In the other two states, B, >
B, ~ B, and d,, = 0. The loss of spherical symmetry in these
states can be understood by examination of Table 2. Specifically,
in the states in which the node is in gg,+» or gg,+3, two of the
distinct hydrogen atoms are in positions A and B on one side
of the node and in positions C, D, or E on the other. This brings
the vibrationally averaged structure closer to the two C;
stationary-point structures, shown in Figure 1, with less
amplitude in the region of the C,, saddle point. Whereas similar
behavior is seen for the other two excited states, only one of
the hydrogen atoms is involved, thereby making the distortion
from spherical symmetry less pronounced. Analogous behavior
is seen for CDs".

5. Conclusions

In this work, we investigated the wave functions for several
excited states of CHs™. Although the initial motivation for this
work was to study excited states of the stretch fundamental,
the states that emerged from the calculation were somewhat
lower in frequency and reflect combination bands that involve
HCH bends. Four of the five states contain nodes along
coordinates that, taken together, transform under the G;*
irreducible representation of the G4 permutation-inversion
group. Projections of the probability amplitudes associated with
these states are nearly identical, but the calculated energies differ
by several hundred wavenumbers. This result was, at first,
surprising. Further analysis of the wave functions showed that
these four states sample the 120 minima on the CHs" potential
in different ways. Specifically, introducing constraints that one
of the CH bond lengths must be larger or smaller than the sum
of a subset of the remaining CH distances results in the wave
function becoming localized in a subset of the minima on the
potential. Further, the sampling of these minima is different for
each of these four excited states. The structure of the nodal
surface that separates the regions of space where the wave
function has positive and negative amplitude is not a simple
17-dimensional function of a single coordinate, but rather a
complicated function of the collective isomerization coordinates.

The consequences of this in the spectroscopy are not
straightforward, as indicated by the changes in the vibrationally
averaged rotational constants by as much as 10% and the
reduction of the symmetry of the molecule. This reinforces the
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experimental observation that the rotation—vibration spectrum
is complex. As we move forward, we hope to explicitly calculate
rotation—vibration states with J > 0 directly by DMC ap-
proaches®! in order to gain further insights into the spectroscopy
and dynamics of this complicated small molecule.
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